首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2217篇
  免费   150篇
  国内免费   810篇
安全科学   189篇
废物处理   138篇
环保管理   207篇
综合类   1301篇
基础理论   355篇
污染及防治   729篇
评价与监测   117篇
社会与环境   71篇
灾害及防治   70篇
  2023年   41篇
  2022年   152篇
  2021年   152篇
  2020年   93篇
  2019年   79篇
  2018年   92篇
  2017年   136篇
  2016年   113篇
  2015年   153篇
  2014年   184篇
  2013年   254篇
  2012年   203篇
  2011年   201篇
  2010年   150篇
  2009年   142篇
  2008年   163篇
  2007年   122篇
  2006年   149篇
  2005年   95篇
  2004年   59篇
  2003年   45篇
  2002年   45篇
  2001年   37篇
  2000年   52篇
  1999年   53篇
  1998年   50篇
  1997年   40篇
  1996年   35篇
  1995年   22篇
  1994年   18篇
  1993年   11篇
  1992年   8篇
  1991年   7篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1972年   1篇
排序方式: 共有3177条查询结果,搜索用时 15 毫秒
991.
Simulation of fine particulate matter (PM2.5) exposure is essential for evaluating adverse health effects. In this work, an ambient exposure system that mimicked real atmospheric conditions was installed in Taiyuan, China to study impacts of chronic PM2.5 exposure on adult and aged mice as well as Sirtuin3 knockout (Sirt3 KO) mice and wild-type (WT) mice. The real-ambient exposure system eliminated the possible artificial effects caused from exposure experiments and maintained the physiochemical characteristics of PM2.5. The case studies indicated that aged mice exhibited apparent heart dysfunction involving increased heart rate and decreased blood pressure after 17-week of real-ambient PM2.5 exposure. Meanwhile, 15-week of real-ambient PM2.5 exposure decreased the heart rate and amounts of associated catecholamines to induce heart failure in Sirt3 KO mice. Additionally, the increased pro-inflammatory cytokines and decreased platelet related indices suggested that inflammation occurred. The changes of biomarkers detected by targeted metabolomics confirmed metabolic disorder in WT and Sirt3 KO mice after exposed to real-ambient PM2.5. These results indicated that the real-ambient PM2.5 exposure system could evaluate the risks of certain diseases associated with air pollution and have great potential for supporting the investigations of PM2.5 effects on other types of rodent models.  相似文献   
992.
This work explored the influences of the drying and calcination temperatures on a Ce-Cu-Al trimetallic composite catalyst for the simultaneous removal of H2S and PH3. The effects of both temperatures on the structural features and activity were examined. The density functional theory method was used to calculate adsorption energies and further analyze their adsorption behavior on different slabs. Experiments revealed suitable drying and calcination temperatures to be 60 and 500°C, respectively. The capacity reached 323.8 and 288.1 mg/g. Adjusting drying temperature to 60°C is more inclined to form larger and structured grains of CuO. Rising calcinating temperature to 500°C could increase the grain size and redox capacity of CuO to promote performance. Higher temperatures would destroy the surface structure and lead to a crystal phase transformation, which was that the CuO and Al2O3 were gradually recombined into CuAl2O4 with a spinel structure. The exposed crystal planes of surficial CuO and CuAl2O4 were determined according to characterization results. Calculation results showed that, compared with CuO (111), H2S and PH3 have weaker adsorption strength on CuAl2O4 (100) which is not conducive to their adsorption and removal.  相似文献   
993.
模拟燃烧11 种常见物质(秸杆、木材、煤和生活垃圾等),并收集烟气中可溶于甲醇的有机产物,利用紫外-可见吸收光谱(UV-Vis)和三维荧光光谱(EEMs)对收集的甲醇可溶性有机物(MSOM)进行表征.进一步,结合非负矩阵分解法(NMF)提取三维荧光光谱主要组分的特征激发/发射光谱,根据荧光信号轮廓差异对不同种类物质进行区分,旨在建立棕色碳溯源依据.结果显示,秸杆和木材燃烧源棕色碳在紫外-可见吸收光谱上呈现相似的谱形,均在265nm处存在肩峰;瓦楞纸板和塑料燃烧源棕色碳的吸收则随波长增加单一下降.由于基本组分相同,各生物质及纸板对应的棕色碳的EEM有着相似的轮廓,NMF解析结果表明,生物质和纸板的MSOM存在3种主要荧光组分,分别为两种类腐殖质C1、C2和类蛋白质C3;煤的EEM在长波处有较强的分布,可归因于芳香类基团,由其EEM分解出M1、M2和M3荧光团,三者位置均较生物质红移.根据荧光团位置以及光谱信号轮廓特征,可对生物质和煤进行区分;泡沫、塑料袋和塑料瓶属于有机高分子材料,其EEM与生物质有较大的差别,且三者之间也存在差异,泡沫和塑料袋的MSOM含有4种荧光成分,而从塑料瓶的MSOM中只可得到两种荧光团,特征明显.  相似文献   
994.
Petrochemical enterprises have become a major source of global greenhouse gas (GHG) emissions. Yet, due to the unavailability of basic data, there is still a lack of case studies to quantify GHG emissions and provide petrochemical enterprises with guidelines for implementing energy conservation and emission reduction strategies. Therefore, this study conducted a life cycle assessment (LCA) analysis to estimate the GHG emissions of four typical petrochemical enterprises in China, using first-hand data, to determine possible emission reduction measures. The analytical data revealed that Dushanzi Petrochemical (DSP) has the highest GHG emission intensity (1.17 tons CO2e/ton), followed by Urumqi Petrochemical (UP) (1.08 tons CO2e/ton), Dalian Petrochemical (DLP) (average 0.58 tons CO2e/ton) and Karamay Petrochemical (KP) (average 0.50 tons CO2e/ton) over the whole life cycle. At the same time, GHG emissions during fossil fuel combustion were the largest contributor to the whole life cycle, accounting for about 77.31%–94.27% of the total emissions. In the fossil-fuel combustion phase, DSP had the highest unit GHG emissions (1.20 tons CO2e), followed by UP (0.89 tons CO2e). In the industrial production phase, DLP had the highest unit GHG emissions (average 0.13 tons CO2e/ton), followed by UP (0.10 tons CO2e/ton). During the torch burning phase, torch burning under accident conditions was the main source of GHG emissions. It is worth noting that the CO2 recovery stage has "negative value," indicating that it will bring some environmental benefits. Further scenario analysis shows that effective policies and advanced technologies can further reduce GHG emissions.  相似文献   
995.
For better use of solar energy, the development of efficient broadband photocatalyst has attracted extraordinary attention. In this study, a ternary composite consisting of Sr2LaF7:Yb3+,Er3+ upconversion (UC) nanocrystals and Bi nanoparticles loaded BiOBr nanosheets with oxygen vacancies (OVs, SLFBB) was designed and synthesized by multistep solvent-thermal method. Mechanisms of in-situ formation of Bi nanoparticles and OVs in BiOBr/Sr2LaF7:Yb3+,Er3+ composites (SFLB) are clarified. The Bi metal and OVs enhanced the light-harvesting capacity in the region of visible-near-infrared (Vis-NIR), and promoted the separation of electron–hole (e/h+) pairs. Furthermore, the surface plasmon resonance (SPR) effect of Bi metal can improve the energy transfer from Sr2LaF7:Yb3+,Er3+ to BiOBr via nonradiative energy transfer process, resulting in enhancing the light utilization from upconverting NIR into Vis light. Due to the synergistic effects of UC function, SPR and OVs, the SFLBB exhibited obviously enhanced photocatalytic ability for the degradation of BPA with a rate of 8.9 × 10−3 min−1, which is about 2.78 times higher than 3.2 × 10−3 min−1 of BiOBr (BOB) under UV–Vis-NIR light irradiation. This work provides a novel strategy for the project of high-efficiency Bismuth-based broadband photocatalysts, which is helpful to further understand the mechanism of enhanced photocatalysis by UC function and plasmonic effect.  相似文献   
996.
The coronavirus (COVID-19) pandemic is disrupting the world from many aspects. In this study, the impact of emission variations on PM2.5-bound elemental species and health risks associated to inhalation exposure has been analyzed based on real-time measurements at a remote coastal site in Shanghai during the pandemic. Most trace elemental species decreased significantly and displayed almost no diel peaks during the lockdown. After the lockdown, they rebounded rapidly, of which V and Ni even exceeded the levels before the lockdown, suggesting the recovery of both inland and shipping activities. Five sources were identified based on receptor modeling. Coal combustion accounted for more than 70% of the measured elemental concentrations before and during the lockdown. Shipping emissions, fugitive/mineral dust, and waste incineration all showed elevated contributions after the lockdown. The total non-carcinogenic risk (HQ) for the target elements exceeded the risk threshold for both children and adults with chloride as the predominant species contributing to HQ. Whereas, the total carcinogenic risk (TR) for adults was above the acceptable level and much higher than that for children. Waste incineration was the largest contributor to HQ, while manufacture processing and coal combustion were the main sources of TR. Lockdown control measures were beneficial for lowering the carcinogenic risk while unexpectedly increased the non-carcinogenic risk. From the perspective of health effects, priorities of control measures should be given to waste incineration, manufacture processing, and coal combustion. A balanced way should be reached between both lowering the levels of air pollutants and their health risks.  相似文献   
997.
采用Ce调控负载型钒磷氧(VPO/TiO2)催化剂的表面酸性并与之形成密切相关的微观结构,研究催化剂VPO-Ce/TiO2的脱硝性能.结果表明,当P/V为1/3、Ce/V为1/4、活性组分负载量10%、催化剂焙烧温度为400℃时,催化剂的脱硝活性最好,反应温度250~350℃范围内的脱硝率高于96.0%.BET测试结果表明,催化剂0.1VP(0.33)O-Ce(0.25)/TiO2的比表面积为10.74m2/g,较0.1VP(0.33)O/TiO2提高了约58.6%.0.1VP(0.33)O/TiO2表面化学吸附氧(Oα)和晶格氧(Oβ)的比例Oα/Oβ为72%,掺杂Ce后Oα/Oβ升高至85%,Ce掺杂还能促进相邻V5+和V4+的形成,提高催化剂的氧化还原性能.Ce掺杂对催化剂的表面酸性影响较大,当Ce/V为1/4时催化剂表面Brønsted酸最强,这与活性测试相吻合.控制烟气中SO2和水蒸气的体积浓度分别为200×10-6和4vol.%,催化剂的脱硝活性在150~300℃温度范围内最高下降约15.8%,当温度高于300℃时催化剂的脱硝活性几乎不下降,且反应后的催化剂表面无硫酸根生成,催化剂呈现出较强的抗SO2和水蒸汽的性能.  相似文献   
998.
A monitoring method of biofouling in reverse osmosis (RO) system was proposed based on the fluorescent signal of resorufin, which is reduced by nicotinamide adenine dinucleotide released from viable cells during aerobic respiration. The fluorescent signal of resorufin reduced by planktonic cells and microorganisms of biofilm showed linearity, indicating its feasibility to monitor biofouling in a RO system. For the application of the method to the lab-scale RO system, the injection concentration of resazurin and the injection flow rate were optimized. Biofilm on RO membranes continuously operated in a lab-scale RO system was estimated by resorufin fluorescence under optimized detection condition. As a result, resorufin fluorescence on RO membrane showed a significant increase in which the permeability of RO system decreased by 30.48%. Moreover, it represented the development of biofilm as much as conventional biofilm parameters such as adenosine triphosphate, extracellular polymeric substances, and biofilm thickness. The proposed method could be used as a sensitive and low-cost technology to monitor biofouling without autopsy of membranes.  相似文献   
999.
Herein,with the exploitation of iron and nickel electrodes,the 2,4-dichlorophenol(2,4-DCP)dechlorinating processes at the anode and cathode,respectively,were separately studied via various electrochemical techniques(e.g.,Tafel polarization,linear polarization,electrochemical impedance spectroscopy).With this in mind,Ni/Fe nanoparticles were prepared by chemical solution deposition,and utilized to test the dechlorination activities of 2,4-DCP over a bimetallic system.For the iron anode,the results showed that higher 2,4-DCP concentration and solution acidity aggravated the corrosion within the electrode.The charge transfer resistance(R_(ct))values of the iron electrode were 703,473,444,and 437Ω·cm~2 for the initial 2,4-DCP concentrations of0,20,50,and 80 mg/L,respectively.When the bulk pH of the 2,4-DCP solution varied from 3.0,5.0to 7.0,the corresponding R_(ct) values were 315,376,and 444Ω·cm~2,respectively.For the nickel cathode,the reduction current densities on the electrode at-0.75 V(vs.saturated calomel electrode)were 80,106,and 111μA/cm~2,for initial 2,4-DCP concentrations of 40,80,and125 mg/L.The dechlorination experiments demonstrated that when the initial pH of the solution was 7.0,5.0,and 3.0,the dechlorination percentage of 2,4-DCP by Ni/Fe nanoparticles was 62%,69%,and 74%,respectively,which was in line with the electrochemical experiments.10 wt.%Ni loading into Ni/Fe bimetal was affordable and gave a good dechlorination efficiency of 2,4-DCP,and fortunately the Ni/Fe nanoparticles remained comparatively stable in the dechlorination processes at pH 3.0.  相似文献   
1000.
选取上海市某工业区内专项化学品制造行业中有代表性的10家企业,使用苏玛罐对各企业有组织排放废气进行采样,通过GC-MS(气相色谱-质谱联用仪)对106种VOCs进行分析,研究了专项化学品制造行业的VOCs排放特征,并使用MIR(最大增量反应活性)法计算了各企业排放VOCs对臭氧生成的贡献.结果表明:OVOCs(含氧挥发性有机物)和芳香烃是专项化学品制造行业的VOCs特征组分,OVOCs与芳香烃质量分数之和为65.0%~100.0%;8家企业排放的VOCs中质量分数最高的物种均为OVOCs,w(OVOCs)为55.8%~99.9%.异丙醇、四氢呋喃、丙酮、乙酸乙酯等OVOCs及苯、甲苯等芳香烃是专项化学品制造行业的特征物种.10家企业排放VOCs的OFP(臭氧生成潜势)为1.9~933.5 mg/m 3,OVOCs和芳香烃是专项化学品制造企业的主要活性组分,累计对OFP的贡献率在80.1%~100.0%之间.异丙醇、四氢呋喃、丙酮、乙酸乙酯、甲基异丁基酮、苯和甲苯等是专项化学品制造行业的关键活性物种.研究显示,专项化学品制造行业VOCs污染治理应重点控制OVOCs和芳香烃.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号